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Executive Summary 

The work performed in the reporting period has been.focused on completion of Task 1.1, 
and continuation of Task 1.2 and Task 2.2 described in the project proposal. The 
activities related to Task 1.1 are formation of cracks in a computational micromechanics 
failure analysis of a representative volume element containing disordered fiber 
distributions and Task 1.2 concerns growLh and instability of initiated cracks in the 
environment of the disordered fiber distributions. The activities related lo Task 2 cover 
modeling of interface bonds between different phases in a composite. 

Task 1.2 Ply level constrained cracking 

Task 1.1 dealt with initiation of micro-level cracking. It has been essentially completed 
and most results were reported in previous quarterly reports. Figure 1 illustrates the 
process of crack initiation from clustering of cavitation points in the matrix. On the left is 
the representative volume element (RVE) consisting of nonunifonnly distributed fibers 
embedded as a circular cell within the homogenized composite of outer rectangular 
boundary. The assembly is subjected to a uniform displacement normal to the fiber axis. 
From the stress and strain fields calculated by a finite element model (left in Fig. l ), and 
application of a criterion for cavitation in the matrix, the first and subsequent points of 
dilatation induced cavitation are found. Two stages of the evolution of cavitation are 
shown in Fig. 1. In the early stage (middle figure), diffuse points of cavitation occur, 
while clustering of the cavitation occurs as the applied transverse tension increases. 
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Figure 1. The RVE consisting of discrete disordered fiber distribution is embedded as a 
circular cell within a homogenized composite region (left) and the assembly is subjected 
to uniform tension. The figure in the middle shows early stage of cavitation and the one 
to the right shows a later stage. Red dots indicate the points where cavitation occurs 
under transverse tension. 

Multiple realizations of RVEs are generated and for each realization representing a 
certain degree of fiber mobility during the manufacturing process, the formation of the 
first crack is studied. The criterion for crack formation is occurrence of - 4 cavitations 
along a strip oriented approximately normal to the loading direction. Each cavitation is 
assumed to cause fiber/matrix debonding, as described in previous reports. Coalescence 
of the adjacent disbonds results in initiation of a transverse crack. Figure 2 (a) plots the 
applied strain at which first cavitation occurs and when the first crack forms. The results 
are plotted against increasing mobility of fibers given by the radial deviation from initial 
positions in the dry bundle state. 
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Figure 2. (a): The applied strain at which transverse cracking occurs and at which the first 
cavitation causing fiber/matrix debonding occurs versus the radial mobility of fibers 
during the resin infusion process (for a fixed angular mobility). (b): The same strains as 
in (a) when voids of different size are present at one fiber mobility. 
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The failure analysis described above is conducted with micro-voids present between the 
fibers. The results for one case of fiber mobility (i.e., one case of fiber clustering) are 
plotted in Fig. 2(b). The results suggest that generaJly, the strain to crack formation is 
higher by approximately the same amount at all void sizes. These strains increase with 
fiber mobility, i.e. with reduced fiber clusters. However, when micro-voids are present, 
the effect is to cause cavitation as well as crack formation earlier. 

The ongoing research will focus on continued growth of the initiated transverse cracks. 
Conditions for instability of crack growth will be examined. 

Task 2. Peridynamic modeling of failure at the interface between composite phases 

Background 

Lead-free solder joints used in microelectronics and electronic packaging for critical 
mission defense applications tend to fail because of the presence of intermetallic 
compounds in the solder matrix material. lo Figure 3 (a) we show an example of a failed 
solder joint from repeated drop-tests. The fractures tend to happen along the intermetallic 
component or at the interface between the two components of the composite. The 
availability of rnicroscale experimental data in these systems make them a good choice 
for testing the peridynamic modeling of failure in composites. 

(a) ---------

(b) (c) 

Figure 3. (a) Microscale SEM image of a failed so lder joint; (b) selection of a sample 
microstructure to be used for modeling; (c) the digitized material map for the 
microstructure in (b ). 

Approach and Results 

To this end, we create a digitized model of the two-phase composite (see Figure 3b and 
3c), in which the blue phase is the brittle phase. The properties of the bonds between 
peridynamic nodes in the matrix (SAC305) and the inclusions (AuSn4) are calibrated to 
their respective composition, while for the bonds that cross material interfaces between 
these two components, we use interface bonds (see Figure 4). The properties of these 
bonds are based on a "mixture" of the properties of the individual phases. 
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Figure 4. Assignment of bond properties depending on the location of its end-nodes. 
Interface bonds have special properties. 

Using boundary data from time-series of component-level finite element simulations, the 
peridynamic results show growth of cracks that propagate mostly along the material 
interfaces between the inclusions and the matrix (se Figures 5a and 5b ). 

Figure 5. (a) the digitized composite sample; (b) damage index map showing the presence 
of two main crack lines obtained with the PD model; (c) map of strain energy density; (d) 
the new quasi-index damage is a predictor of fai lure. 

As in the case of FRCs, one wants to primarily increase reliability of electronic 
components and avoid failure. The strain energy density, in a homogeneous material, is a 
good measure for estin1ating the propensity of failure at a point. However, for composite 
materials, the strain energy density is no longer a good indicator of where failure might 
occur (see Figure 5c). This is why we introduced a new measure, a precursor of fracture, 
which can give an indication of which points are most likely to fail, before actual failure 
happens. The "quasi-damage index", shown in the formula below, is a point-wise 
measure that uses the strain in a bond between nodes i and}, the total number of bonds at 
the node x i , N(x:,), and s0(~J}, the critical strain for bond (~j). 
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With the quasi-damage index, we are able to foresee where the cracks may initiate from. 
The comparison between Figures 5b and 5d prove this point. 

The ongoing research will extend this approach to investigate failure in fiber-reinforced 
composites. The draft for a journal paper on the topic shown above is in preparation. 
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